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Introduction 

Fluid pressure diffusion processes are of considerable interest in rock characterization using geophysical 

monitoring techniques. For example, the injection of fluid in a borehole can generate detectable 

microseismic events triggered by fluid pressure perturbations. These pressure perturbations are 

equilibrated through a diffusion process. The microseismic events, in turn, are used to infer dominant 

fluid pathways in a formation of interest and to estimate the large-scale permeability from their spatio-

temporal evolution.  Another example, is the analysis of conversion from propagating seismic waves 

into diffusive (slow) waves. This results in attenuation of seismic waves which can provide information 

on the size and distribution of sub-wavelength heterogeneities. 

To make such monitoring techniques work, it is essential to understand the nature of the diffusion 

process.  For that the underpinning physics at the pore-scale level becomes important. Particularly, how 

the fluid phase interacts with the deformable solid matrix; whether this interaction fluid proceeds in a 

compressible or incompressible manner. We use the method of volume averaging to analyze diffusion 

processes in deformable porous rocks at macroscale and derive an expression for the diffusion constant 

that encompasses the compressible and incompressible flow limit. 

Methodology 

At pore-scale the solid and fluid phase interact through the deformation of the pore interface. There are 

several possibilities how this interaction proceeds. In the situation that the pore interface is not 

deformable, the solid phase is not taking part and the resulting diffusion process is expected to be 

independent of the elasticity of the solid. Whenever the pore-interface is deformable the elasticity of the 

solid matters. In this case the solid and fluid macroscopic pressures interact in a reciprocal or non-

reciprocal manner mediated through porosity change. What is more, in the limit of an incompressible 

flow the elasticity of the fluid becomes irrelevant. 

In the volume averaging poroelasticity framework the sum of the displacements of the pore-interface in 

direction of the surface normal within the averaging volume is interpreted as the change of porosity 𝜂 −
𝜂0, where 𝜂0 is the porosity of the unperturbed (undeformed) rock. To capture the above-mentioned 

interactions at macroscale the porosity perturbation equation is taken as a function of the macroscopic 

solid (𝑝𝑠) and fluid pressure (𝑝𝑓),    

                                                       𝜂 − 𝜂0 = −(1 − 𝜂0) 
𝛼−𝜂0

𝐾0
 (𝑝𝑠 − 𝑛 𝑝𝑓),                                                       (1) 

where 𝐾0 is the bulk modulus of the drained rock frame. This means that the pore-interface deformation 

is characterized at macroscale by two parameters. The lumped parameter 𝛼 − 𝜂0  with the Biot 

coefficient α quantifies the pore-interface deformability and the parameter n makes the interaction 

reciprocal (n=1) or non-reciprocal (0< 𝑛 < 1). Using this porosity perturbation equation, we obtain two 

of pressure equations which together with the equations of motion for the solid and fluid phase in the 
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quasi-static limit from a complete set of equations for the differential pressure and the increment of fluid 

content. 

Results  

Based on the procedure outlined a diffusion equation for the increment of fluid content and fluid pressure 

is obtained with the diffusion coefficient (Müller and Sahay, 2018). It reads 

                                              𝐷 =
𝜅

𝜇𝑓
(

𝜂0

𝐾𝑓
+

𝑛(𝛼−𝜂0)

𝐾𝑠
+

𝛼(𝜂0+𝑛(𝛼−𝜂0))

𝐾0+4
3

 𝜇0
)

−1

,                                              (2) 

where 𝜅= permeability, 𝜇𝑓= fluid shear viscosity, 𝐾𝑓= fluid bulk modulus, 𝐾𝑠= solid bulk modulus and 

𝜇0=shear modulus of the rock frame. Eq. (2) is the main result. From Eq. (2) several special cases can 

be deduced. If n=1 then the interaction is reciprocal in the solid and fluid pressures (see Eq. 1) and the 

Biot diffusion constant is recovered 

                                            𝐷(𝑐𝑜𝑚𝑝) =
𝜅

𝜇𝑓
(

𝜂0

𝐾𝑓
+

(𝛼−𝜂0)

𝐾𝑠
+

𝛼2

𝐾0+4
3

 𝜇0
)

−1

       .                                            (3) 

In practical applications the 2nd and 3rd terms are often neglected so that the approximation 

                                                        𝐷(𝑐𝑜𝑚𝑝) ~
𝜅

𝜇𝑓
    

𝐾𝑓

𝜂0
                                                                        (4) 

is obtained. For typical rock parameters the difference between the diffusion constants (3) and (4) is 

indeed small. Therefore, the reciprocal interaction in the Biot theory results in a diffusion constant for 

which the elasticity of the fluid dominates while the elasticity of the rock frame is absent. In contrast, if 

incompressible flow with uni-directional interaction (n=0) is considered then we find 

                                                        𝐷(𝑖𝑛𝑐𝑜𝑚𝑝) =
𝜅

𝜇𝑓

𝐾0+4
3

 𝜇0

𝛼𝜂0
   .                                                               (5) 

In this limit it is the elasticity of the rock frame that matters while the fluid elasticity is irrelevant. It 

turns out that this is the largest possible diffusion constant. This limiting diffusion constant was also 

obtained in earlier works (e.g., Udey, 2012) using a different route. 

Discussion and Conclusions  

We observe that in deformable porous rocks the pressure diffusion process is governed by the 

directionality of the solid-fluid interaction as well. The difference between the diffusion constants for 

reciprocal and uni-directional interactions can be large (for example, for water-saturated, low-porosity 

rocks the ratio of 𝐷(𝑖𝑛𝑐𝑜𝑚𝑝)  and 𝐷(𝑐𝑜𝑚𝑝)  can exceed two orders of magnitude.  Therefore, if one 

attempts to estimate the permeability on the basis of the diffusion constant without considering the 

nature of the solid-fluid interaction then the incurring error will be substantial. We anticipate that these 

results have implications for the interpretation of microseismic events triggered by fluid pressure 

perturbations.  
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