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Introduction
The ability to solve jointly lithology units and elastic parameters has been shown to reduce the need for detailed prior model building and to improve characterization in places where a detailed background model is difficult to build.  For anisotropic formations, using joint litho-elastic inversion enables us to assign prior information to the lithology units.  This proves to be very beneficial for anisotropic amplitude variation with angle (AVA) and amplitude variation with azimuth (AVAz) inversion where the azimuthal invariant vertical transverse isotropy (VTI) anisotropic parameter space is not resolvable as it is in the inversion null space.
I review the inversion problem and show how anisotropic insert the words for the acronym (LPE) in VTI and orthorhombic media can be used to derive jointly elastic properties, lithology, and petrophysical parameters
Methodology
Using the convolutional seismic forward model, the seismic data are related to the elastic parameter space by the angle-dependent reflectivity function Rpp, which is the nonlinear anisotropic Zeoppritz equation. The elastic parameters are related to the lithology classes (or facies) F and the facies-dependent rock physics parameter space of porosity, volume of clay, total organic content (TOC), fracture density and compliance, and more, defined here by the vector p, The rock physics model is, in general, lithology-dependent. Note that F is discrete and p is continuous.  Both F and p acts as latent variables in the model, i.e., m=m(F,p).

[bookmark: _GoBack]Following Rimstad (2012) and Kempler and Gunning (2014) we formulate the inversion problem in a Bayesian framework and define the likelihood of seismic response given m as L(S| m)~exp([S- f(m)]’C-1d[S- f(m)]).  Then, the inverse problem is solved by finding the posterior probability of m and p jointly.  The posterior probability can be written as  where p(F, p) is the prior joint lithoclass and petrophysical parameters probability and p(m|F, p) is the likelihood of elastic parameter given lithology F and rock physics parameters p. Details on the solution algorithm are found in Bachrach (2018).
Results:
The method has been applied to invert both VTI and orthorhombic models.  The main message is that anisotropic modelling shows the need to address anisotropy during the inversion process (Figure 1).  Rock physics modelling and petrophysical parameter space are derived using lithology-driven anisotropic parameters, which are derived jointly by data-driven lithology prediction and prior lithology anisotropy knowledge.  We will show results from different unconventional plays.
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Figure 1: (a).  Vertical P impedance, Vp/Vs ratio, difference between slow and fast shear and density from a Bakken well.  Note that color-coded by gamma ray.  (b).  Elastic parameters from ORT  LPE inversion (c).  Anisotropic parameters from ORT LPE inversion. (d).  Class, porosity and fracture compliance from ORT LPE inversion. 
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