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Introduction
The so-called Hertz-Mindlin theory is widely used to compute elastic properties of uncemented granular media. An attractive feature of the model is that stress dependence emerges directly from the nonlinear interparticle force – displacement contact law. Several laboratory studies have been performed and in general conclude that calculated velocities are overestimated, unless the coordination number (average number of contacts per particle) is reduced below what is thought to be realistic, or grain stiffnesses are reduced below tabulated values for solid constituents. Walton (1987) extended the classical approach by permitting grain contacts to be either “perfectly rough” (no-slip) or “perfectly smooth” (zero friction or perfect slip). From experiments performed under isotropic external stress conditions, velocities vary between these two bounds (e.g. Holt et al., 2007). Stress sensitivity, which in general is underestimated by the model, can be tailored to fit the data either by introducing a stress dependent coordination number or by creating a mixture of slip and no-slip contacts (Duffaut et al., 2010).
Walton (1987) derived solutions for uniaxial strain in addition to isotropic stress conditions. Uniaxial compaction experiments with glass beads (Holt et al., 2007) show however that velocities of waves propagated or polarized in the zero-strain direction are severely underestimated by the anisotropic Walton model. In fact, all these velocities are significantly above the upper (no-slip) bound of the theory. A possible explanation for this is that the model underestimates the build-up of confining stress to counteract the enforced zero strain condition. 
Theoretical method
In this presentation, we will present a generalized Hertz-Mindlin-Walton model which may account for any anisotropic stress path, including uniaxial strain. Other stress paths than isotropic have been addressed by Bandyopadhyay (2009). He assumed a vertical symmetry axis with isotropic horizontal strain, and further, small strain anisotropy. In the current work (see Torset, 2018 for details), the latter assumption has been relaxed. The resulting equations are functions of strain anisotropy, which may be directly linked to stress anisotropy, reducing to Walton's equations in the limits of uniaxial and isotropic compaction, both for the rough and smooth contacts. Notice that the uniaxial strain limit is not mathematically well- behaved, giving extremely large ratio between vertical and horizontal stress. Realistic stress ratios are however calculated already for very small values of the horizontal strain. 
Comparison with laboratory experiments
The generalized Walton model is compared with laboratory measurements where different samples of compacted dry sand and glass beads are tested under different stress paths, including isotropic, uniaxial strain and horizontal / vertical stress = ½. Vertical and horizontal ultrasonic P- and S-wave velocities were measured. In all cases, the velocity data fall between the revised slip and no-slip bounds. An example is shown in Figure 1: The curves show axial (a) and radial (b) P-wave velocities during uniaxial compaction of glass beads. The measured stress anisotropy was used to estimate a finite value for the radial strain. This is the same case from Holt et al (2007) mentioned above, where the radial velocity data exceeded the zero strain Walton bounds by far. The curves through the data points are made by modelling the medium as a binary mixture of slip and no-slip contacts, where the no-slip fraction is assumed to increase as a cube root function of the axial stress; i.e.  a 1/3 + b (a and b are fitting parameters; with different fitting parameters for each mode). Such a form is inspired by Mindlin's (1949) cube-root relation between the radius of the no-slip zone and the contact radius. Notice however that assuming a stress dependent coordination number accounting for the force chains between grains can give the same result.
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Figure 1: (a) Axial and (b) radial P-wave velocities vs axial stress in a uniaxial strain experiment with glass beads, showing the theoretical no-slip and slip bounds together with the measured data. 
Conclusions
A revised version of Walton's extended Hertz-Mindlin model permitting analysis of anisotropic velocities along a general stress path has been developed. Comparisons with laboratory experiments on sand and glass beads demonstrate the validness of the approach. Further work will focus on amore general assessment of stress path sensitivity.
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