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Introduction 

Shale, as a typical sedimentary rock, behaves strongly anisotropic. Holt et al. (2015) presented a series 

of lab tests, showing that the anisotropy of the dynamic modulus from P-wave velocity, the cyclic 

Young’s modulus and the initial Young’s modulus by static loading are different, but still related.  In 

this study, we ascribe the rock behavior to lamination and four different sets of cracks. By controlling 

the constitutive parameters of the lamination and the cracks, this rock physics model can match the 

measured moduli well. 

Methodology 

We introduce the impact of thin-flat cracks into a host material, where a modified Backus model with a 

lamination factor u  characterizes the horizontal lamination of the host material, and four crack sets, a  

b  c  and d  with crack density   and drainage constant D  (Budiansky and O’Connell, 1976), affect 

this laminated material. Crack sets a  and b  represent open and saturated cracks, and crack sets c  and 

d  represent closed cracks that may slide during initial static loading (The drainage constants 

0c dD D= = ). Cracks a  and c  are randomly oriented, while b  and d  are parallel to the lamination.  

The stiffness tensor of the laminated host material l
C  is affected by a set of cracks through the crack 

density   and the impact tensor Q . By assuming no mechanical interaction between these crack sets, 

the effective stiffness tensor 
C  can be expressed as (Fjær et al., 2008) 
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where  is Hadamard product. The stiffness tensor of the laminated host material l
C  is derived from 

the stiffness tensor of the isotropic host material 0
C  by introducing a lamination factor u , defined as  

 ( ) ( )11 22 33 44 55 661 0.9             / 1l l l l l lC C C u C C C u= = + = = +   (2) 

where 0.9 is calculated from the elastic properties of the Field shale tested in the lab (0.6 for Mancos 

shale). The impact of randomly oriented cracks, ( )a
Q  and ( )c

Q , are expressed based on the work by 

Walsh (1965), Garbin and Knopoff (1975, 1973). The impact of the crack parallel to the horizontal 

lamination, ( )b
Q  and ( )d

Q , are calculated based on the work by Hudson (1981).  

Rotating the effective stiffness tensor 
C  along any axis within the horizontal plane yields 

T

  

 =C R C R . Inversing 


C  yields the corresponding compliance matrix 


S  and the vertical Young’s 

modulus vE  is calculated as the inverse of ,33


S . 
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We determine the lamination factor u , the crack density 
a  

b  
c  and 

d , and the drainage constant 

aD  and bD  as follows: 1. Determine u  by matching the measured P-wave modulus and the simulated 

P-wave modulus ,33


C  only based on the laminated stiffness tensor l

C . It is assumed that cracks c  and 

d  are inactive ( 0c d = = ) due to the low strain amplitude, and that 1a bD D= (undrained cracks) 

due to the high frequency. 2. Determine 
a  and 

b  by matching the simulated cyclic Young’s modulus 

c

vE  with the measured one. We assume that 1a bD D= =   (drained cracks) due to the low strain rate, and 

that cracks c  and d  are inactive ( 0c d = = ). 3. Determine 
c  and 

d  by matching the simulated 

initial Young’s modulus 
i

vE  with the measured one. Here we assume that cracks c  and d  are active 

while cracks a  and b  are drained. Finally, the dynamic Young’s modulus 
d

vE  can be evaluated by 

assuming 1a bD D=  (undrained cracks) and 0c d = = (non-sliding cracks).  

Results  

By fitting the free parameters, we can match the simulated moduli with the measured ones, as shown in 

Figure 1. The fitted parameter values (also shown in Figure 1) reveal the physical origin of the 

dominating causes for both the static and the dynamic anisotropy.  

  

 Mancos Field 

u  0.185 0.600 

a  0.155 0.100 

b  0.015 0.000 

c  0.400 0.330 

d  0.010 0.050 

Figure 1: Moduli with respect to inclination for Mancos shale (left) and a Field shale from the 

Norwegian Continental Shelf (right). Square – measured value; Solid line – simulation. 

Conclusions 

This simple rock physics model, accounting for lamination and cracks with various orientations, enables 

identification of the most important origins of static and dynamic anisotropy for a given rock. This may 

open up for prediction of stress dependent anisotropy. 
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