Fracture static elastic properties inferred from flow measurements

Joseph H.Y. Ma, Qiaomu Qi, Yu Qiu, Yunyue Elita Li, and Arthur Cheng

18th May 2018

A model coupling fluid flow and elastic properties in rocks

Adopted from Li et al. (2015)

2nd NUPRI Workshop

Motivation – Importance of Fractures

- Presence of fractures enhances material and energy exchange
- Key components in geological and sub-surface engineering
 - Unconventional hydrocarbon production
 - Geothermal energy extraction
 - Hydrogeological phenomena

Image: iogsolutions.com

Image: geothermalworldwide.com

Motivation – Elasticity Measurements

- Variations between dynamic and static elastic parameters in rocks
- Relatively common to obtain dynamic elasticity
 - Seismic survey, acoustic logging, pulse transmission experiments
- Not necessarily straight forward to get static elasticity
 - Direct mechanical measurements unable to conduct in subsurface

 \bigcirc

Stress-dependent flow properties also reflect fracture elasticity

Background

Implicit linkage between fluid flow

and stiffness properties in rough fractures

- Contact areas determines stiffness
- Pore volumes determines fluid flow

conductivity

dm

Adopted from Pyrak-Nolte et al. (2000)

To infer for fracture static elastic properties (e.g. compliance, stiffness, compressibility, stress-free areas) from flow measurements

- Using steady-state fluid flow properties of different stress levels
- Develop relation on mechanical characteristics

Workflow

- **1. Experimental flow measurements on fracture**
- 2. Flow simulation on digitized fracture configurations
- **3.** Inversion for pressure-displacement relationship
- 4. Inference of fracture static elastic properties

Semi-Rough Fracture Model

Semi-Rough Fracture Model

Stress dependency of flow properties

Aperture distribution

×10⁻³ 1.8 1.6 1.4 E 1.2 로 $d = 1.5\sigma$ 0.8 ₹0.6 0.4 0.2 ×10⁻³ 1.8 1.6 1.4 [ɯ] 1.2 [ɯ] $d = 2.5\sigma$ Apertul 9.0 0.4 0.2

Simulated flow flux field

2nd NUPRI Workshop

Inversion for *d* **- P**_e **Relation**

- By minimizing the discrepancies between measured and simulated permeability
- Correspondence between confining pressure and compression displacement

Inversion for *d* **- P**_e **Relation**

Parametric curve fitting

 $d = a + \sigma_E \ln P_e$

•

Half-joint model assumingexponential-distributed aperture(Swan, 1983)

$$* \sigma_{\rm true} = 2.04 \times 10^{-4} {\rm m}$$

Inverted Fracture Elasticity - Stiffness

- Logarithmic increase in rock stiffness
- Substantial difference in rock stiffness under different pressure
- Inverted rock stiffness of several GPa between 5 – 30 MPa effective pressure

Incompressibility

Inverted Fracture Elasticity - Incompressibility

Benchmarking with published data

- Linear increase in incompressibility against pressure
- Single fracture

"softer" than cracks

With a known fracture topography, we can obtain

- Fracture permeability under compression displacement
 - Numerical flow simulations based on semi-rough model
- A compression displacement effective pressure relation
 - Inverted from the permeability reduction trend from experiment and simulations
- Fracture static elastic properties
 - Inferred from the inverted mechanical relation

Acknowledgements

- EDB Petroleum Engineering Professorship
- MOE Tier-1 Grants
 - R-302-000-165-133
 - R-302-000-182-114
- Singapore International Graduate Award
- Key Laboratory of Groundwater Resources and Environment, Jilin University