Attenuation of rock salt:
Gulf of Mexico core measurements and a VSP survey

Jingjing Zong1,2, Robert R. Stewart2, Nikolay Dyaur2

1. National University of Singapore
2. University of Houston
Outline

Introduction and motivations

Ultrasonic lab Q measurements
 Gulf coast salt cores

Field Q estimations
 A VSP survey in Markham salt dome, TX

Conclusions
Attenuation mechanism

- Geometrical spreading

\[Q = \frac{\Delta E}{2\pi \cdot E} = \frac{\Delta A}{\pi \cdot A} \]

- Scattering

- Intrinsic attenuation or anelasticity
Motivations of the salt study

Seal rock
studyblue.com

Storage
© KBB Underground Technologies

Mining
saltassociation.co.uk
Attenuation modeling

Synthetic wave propagations in rock salt

Synthetic traces - Z component

Q=50
Q=250
Q estimation – spectral ratio method

(a) Aluminum standard

Sample Q

Aluminum $Q_0 \approx +\infty$

(b) Multi travel lengths

$A(f) = G(x)e^{-\alpha(f)x}e^{i(2\pi ft-\kappa x)}$

$$\ln\left(\frac{A}{A_0}\right) = \left(\frac{\pi t_0}{Q_0} - \frac{\pi t}{Q}\right)f + \ln\left(\frac{G}{G_0}\right)$$

(Johnston, 1978)

$$\ln\left(\frac{A}{A_0}\right) = -\frac{\pi t}{Q}f + \ln\left(\frac{G}{G_0}\right)$$

Measurement Slope Intercept

$$\ln\left(\frac{A}{A_0}\right) = -\frac{\pi}{Q}(t_0 - t)f + \ln\left(\frac{G}{G_0}\right)$$
GoM rock salt core

Hockley, TX

Bayou Corne, LA

Examples of the measured rock salt samples

<table>
<thead>
<tr>
<th>Elements</th>
<th>Hockley (%)</th>
<th>Bayou Corne (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>37.70 ± 0.20</td>
<td>39.53 ± 0.27</td>
</tr>
<tr>
<td>Ca</td>
<td>96.1%</td>
<td>99.6%</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>NaCl</td>
</tr>
<tr>
<td>Mg</td>
<td>0.0014 ± 0.0010</td>
<td>0.0041 ± 0.0033</td>
</tr>
<tr>
<td>Sr</td>
<td>0.0087 ± 0.0001</td>
<td>0.0049 ± 0.0001</td>
</tr>
</tbody>
</table>
Experimental apparatus for ultrasonic measurements

Attenuation of GoM rock salt – spectral ratio method

\[\ln \left(\frac{A}{A_0} \right) = -\frac{\pi t}{Q} f + \ln \left(\frac{G}{G_0} \right) \]

Measurement	**Slope**	**Intercept**
Attenuation of GoM rock salt – spectral ratio method

Benchtop measurements:
- \(H_1 \): \(Q_p: 32 \pm 4, Q_s: 34 \pm 3 \)
- \(H_2 \): \(Q_p: 43 \pm 6, Q_s: 34 \pm 4 \)
Attenuation of GoM rock salt – spectral ratio method

\[\ln \left(\frac{A}{A_0} \right) = -\frac{\pi}{Q} (t_0 - t)f + \ln \left(\frac{G}{G_0} \right) \]

Measurement \quad Slope \quad Intercept

Benchtop measurements

\[Q_p : 57 \pm 13, \; Q_s : 41 \pm 2 \]

\[H_1 \text{ vs. } H_2 \text{ PP-1MHz} \]

Received Pulse

Spectral Amplitude

\[\ln(H_1/H_2) \]
Temperature dependence – Bayou Corne, Louisiana

Relative Q variations under varying temperature
Relative Q variations under varying pressure
Attenuation – pressure and temperature dependence

Vp vs. Pressure, Temperature

Qp vs. Pressure, Temperature

24°C(75°F)-loading 24°C(75°F-unloading) 38°C(100°F) 66°C(150°F) 93°C(200°F)
Pressure healing & thermal cracking

CT Scanning of the test sample before and after pressure loading

Thermal cracks on the surface of rock salt under increasing temperature (Chen et al., 2015)
Attenuation – pressure and temperature dependence

\[\log_{10} Q_P^p = 54 \log_{10} V_{Pp}^p - 34 \]
\[R^2 = 0.7 \]

\[\log_{10} Q_L^p = 53 \log_{10} V_{Pp}^L - 33 \]
\[R^2 = 0.84 \]

\[\ln Q_P = 53 \cdot \ln V_P - 33 \]
\[R^2 = 0.84 \]

\[\log_{10} Q_s = 28 \log_{10} V_s - 10 \]
\[R^2 = 0.4 \]

\[\ln Q_s = 28 \cdot \ln V_s - 10 \]
\[R^2 = 0.4 \]
A typical GoM salt dome

Well A (KB = 25.9 m)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Ray (API)</td>
<td>0</td>
</tr>
<tr>
<td>Caliper (in)</td>
<td>100</td>
</tr>
<tr>
<td>Resistivity (ohmm)</td>
<td>26.02</td>
</tr>
<tr>
<td>Density (g/cc)</td>
<td>2.570</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>8</td>
</tr>
</tbody>
</table>

© John Perez Graphics & Design LLC.
Check-shot data — velocity profile

- **P-wave:** ~4570 m/s
 - In salt

- **S-wave:** ~2560 m/s
 - In salt

Interval velocity
Check-shot data - Qp

P-wave first arrival picking and velocity profile

Flattened down-going P-waves

Spectra ratio and Q estimation
Check-shot data - Qs

1. S-wave first arrival picking and velocity profile
2. Flattened down-going S-waves
3. Spectra ratio and Q estimation

- Time (ms) and Velocity (FT/S)
- Depth (FT) and Frequency (Hz)
- Cumulative Attenuation

Values:
- Depth: 2914, 4000, 5000, 6075, 6000, 6745
- Time: 100 to 1200 ms
- Velocity: 10 to 80 FT/S
- Frequency: 10 to 70 Hz
- Cumulative Attenuation: 0.005, 0.015, 0.025, 0.035

- Qs: 31.6, 10.9, 19.7, 83.4, 16.5
Attenuation – pressure and temperature dependence

Qp vs. Vp

\[\log_{10} Q_{P_{\text{Popp}}} = 54 \log_{10} V_{P_{\text{Popp}}} - 34 \]
\[R^2 = 0.7 \]

\[\log_{10} Q_{P_L} = 53 \log_{10} V_{P_L} - 33 \]
\[R^2 = 0.84 \]

Qs vs. Vs

\[\log_{10} Q_{S} = 28 \log_{10} V_{S} - 10 \]
\[R^2 = 0.4 \]

- Popp et al., 01: Fitting line (Popp et al.)
- \(L_1 \): Fitting line \(L_1 \)
- VSP Markham
Conclusions

• Increase pressure elevates both velocity and Q;
• Increase temperature decreases velocity and Q;
• Q vs. V: $\ln Q_P = 53 \cdot \ln V_P - 33$; $\ln Q_S = 28 \cdot \ln V_S - 10$.

✓ A better understanding of the elastic behaviors of rock salt is provided;
✓ Empirical values and relationships are summarized for direct application.
Acknowledgements

Arthur Cheng, Yunyue (Elita) Li, NUS;
Fred Hilterman and Geokinetics Inc., Houston;
Joel Warneke, Texas Brine Corp. and United Salt Corp.;
Di Jiao, Craig Whitney, Core Laboratories Inc.;
Scott Leaney, Alan Champbell, Ali Sayed, Schlumberger;
Stephan Gelinsky, Long Huang, Shell;
Leon Thomsen, Sharon Cornelius, Yukai Wo, UH;
Thank you!